viernes, 28 de octubre de 2011

La biología actual


El tránsito desde la Ciencia básica a la Tecnología: la Biología como modelo
Aldo González Becerra 
es colaborador científico del Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas de España.
El conjunto de las ciencias básicas (matemáticas, física, química y biología) ha tenido períodos de luces y sombras en el desarrollo histórico de la raza humana, dependiendo algunas veces de genialidades que han contribuido a dar saltos cualitativos y significativos avances. Estos avances han coincidido normalmente con un adecuado aporte económico-social, pero también con períodos de crisis de los sistemas, en los que se ha puesto a prueba la capacidad de sobreponerse a imprevistos o catástrofes esto ha originado que desde los tiempos de Pasteur se hablase de la ciencia y sus aplicaciones. Conceptos más modernos han centrado esta problemática dividiendo el campo entre ciencia básica, ciencia aplicada y tecnología. Aún hoy, no es fácil delimitar las fronteras entre estas grandes vigas maestras, donde se apoya y desde donde emerge el conocimiento.
Introduccion:
Quizás ha sido Konrad Lorenz el que ha puesto la adquisición del conocimiento al nivel de una ciencia de la naturaleza, tratando con ello de buscar una conexión con la realidad plausible. La teoría del conocimiento moderno, que se inicia con John Locke, va incorporando a través de su desarrollo una tendencia positivista y últimamente evolucionista. De tal forma se configura una pregunta fundamental: ¿de qué manera se adquiere conocimiento? La biología, por su parte, inquiere cómo nace el conocimiento a partir de sí mismo. Y esta es la relación mínima que se establece entre la biología y la teoría del conocimiento (Riedl, 1983). Esta pequeña introducción, en la que se solapan algunos fundamentos de la filosofía moderna con la biología, se inserta en la dinámica propia de esta última como disciplina que crea conocimiento, al igual que la química, la física y las matemáticas, sin distinguir los grados de aproximación entre ellas y su capacidad para sumergirse en el campo de la abstracción misma. Sin embargo, no es posible concebir la puesta en marcha de un avance tecnológico sin disponer de los sólidos cimientos que aportan las ciencias básicas por separado. Más recientemente, como se ha podido evidenciar, se van produciendo puentes de aproximación en los que el soporte de una línea de trabajo se encuentra en los puntos de interacción entre dos ciencias. Este nuevo concepto es la multidisciplinariedad, palabra larga y compleja en contenido porque recoge teoría y experimentación de dos o más áreas de investigación, dando lugar a acoplamientos perfectos, en cuyos vértices se produce estimulación de la creatividad. La creación de conocimiento en las ciencias no tiende a admitir como verdad conceptos vagos ni imprecisiones cuantitativas; la forma más común está constituida por evidencias experimentales, que son vertebradas y comprendidas mediante factos lógicos.
Los resultados del avance científico en la unidad que ha venido funcionando desde hace siglos, la nación o el Estado, pueden ser medibles teniendo en cuenta los factores que inciden en el desarrollo de los países. Tal desarrollo, que también se puede determinar, ha dado lugar a que se produzca una distribución entre países con capacidad para crear conocimiento y otros que casi no disponen de él; entre estos extremos se encuentran comprendidas todas las gradaciones. Un reciente ensayo del premio Nobel, Perutz (1991), en el que hace un análisis del impacto de la ciencia sobre algunos ámbitos que refuerzan la calidad de vida de las sociedades, concluye que el avance científico promovido por la investigación se ha producido en el área sanitaria, en la producción de alimentos, en el problema energético y en el del crecimiento de la población. En un artículo de Renart (1995) se señala que el desarrollo científico de un país es un parámetro indicador de la riqueza del mismo, tanto más cuanto que este desarrollo es la causa y no la consecuencia del desarrollo de los países.
Vista desde este ángulo, la relación entre sociedad-ciencia-tecnología y calidad de vida se sitúa sobre un eje en el que no es posible alcanzar el último paso antes de haber realizado un esfuerzo del conjunto social para establecer las bases de un desarrollo científico ordenado y sistemático que permita crear conocimiento. La biología, cuyo auge en este último medio siglo ha sido destacado, es un buen modelo de cómo una disciplina científica puede permear diferentes fases del quehacer social.
La biología es un ejemplo útil que indica cómo a partir de la creación de conocimiento y de su consistente transformación en tecnología, ha permitido elevar los índices de calidad de vida, logrando a su vez una optimación del uso de los recursos disponibles de cada país. Los países que forman parte de lo que se ha dado en llamar primer mundo han adquirido capacidad económica para la compra y disfrute de infraestructura e insumos de los que no disponían, ya fuera por razones geográficas (países nórdicos), de extensión territorial (Europa occidental) o por estar sujetos a la acción de agentes orográficos o geológicos (países bajos, Japón); sin embargo, pueden adquirir alimentos, minerales, maderas, etc., que no pueden producir por sí mismos: esa acumulación de capital se realiza en gran parte mediante la venta de tecnologías a los países terceros. Tal trueque, que en un comienzo fue sólo mercantil, ha terminado induciendo tremendas desigualdades que mantienen verdaderos círculos viciosos entre países independientes y dependientes.
Aplicaciones de la biología en nuevos ámbitos:
Las ciencias biológicas, que son nuestro modelo de análisis, han impulsado el desarrollo en todos los ámbitos del quehacer humano: nuevos fármacos, vacunas, cirugía especializada, diagnóstico y prevención de enfermedades en hombres, plantas y animales, nuevas cepas de organismos vivos de uso agrícola, ganadero y forestal, reparación del medio ambiente, etc., por solo nombrar algunos tópicos de actualidad.
En campos tan alejados de la actividad científica como son los temas judiciales, se ha hecho presente y hasta allí ha alcanzado su influencia. Hoy día a nadie le llama la atención que un juez solicite la aplicación de técnicas de PCR (Polychain enzyme reaction) para comparar el ADN de un supuesto agresor y dictar sentencia sobre un asesinato, o simplemente para determinar la paternidad responsable, identificar cadáveres calcinados por el fuego, semidestruidos por agentes químicos o destrozados en accidentes de tráfico.
Por ello mismo, es bueno manifestar que la propia sociedad debe crear los mecanismos para regular esta nueva afluencia de medios que proporcionan las nuevas tecnologías, con vista a que finalmente redunden en beneficio de la raza humana y se rijan por los estrictos cauces de la ética. Propugnar un avance en la investigación sin tener en cuenta estos aspectos fundamentales, creemos que cuando menos supondría una actitud irresponsable.
La biología, en el concepto globalizador más reciente, busca sus cauces en la interdisciplinariedad de sus tareas y en una estrecha relación con las otras ciencias básicas, matemáticas, física y química, fundamentalmente por la inabarcabilidad del conocimiento que se produce cada día en los laboratorios de los países que se van incorporando a las nuevas disciplinas. En este sentido, la biotecnología ofrece el modelo más integrador, donde concluye e interactúa un conjunto de disciplinas entre las que se da un fuerte componente de interdependencia con la ingeniería genética (Muñoz, 1995).
Disciplinas viejas, disciplinas nuevas y su relación con el entorno natural:
La biología, como todas las ciencias en su devenir histórico, ha ido construyendo un acervo de conocimientos por acumulación, pero quizás éste no sea su mayor tesoro ni su forma más espectacular de obnubilar a la razón humana. Sus saltos cualitativos son los que la sitúan a la cabeza del conocimiento y le permiten escudriñar en la frontera de lo desconocido. Un ejemplo claro ha sido la taxonomía (Muñoz, 1992), la vieja madre de las ciencias biológicas, que desde Linneo ordena y clasifica para ir dando forma a la macroestructura organizativa de la naturaleza. La taxonomía contribuyó así al estudio de la función, y a partir de ella a las especialidades, que parecieron ser la solución del siglo XIX, hasta llegar al período de la biología reduccionista donde la taxonomía quedó relegada al oscuro desván de la historia. En tiempos recientes es la biotecnología la que lentamente va reponiendo a la taxonomía a su nuevo sitial, quizás hasta con un cierto protagonismo. Aparecen nuevas especies con las que hay que trabajar de forma urgente, y el biólogo molecular debe saber con certeza qué organismo es el que está manipulando, y debe disponer también de una metodología rápida y moderna que le permita distinguir para saber qué está ordenando. Se produce de este modo una simbiosis y un aporte de las otras especialidades, y hoy la taxonomía invade los campos del ARN, utiliza las técnicas de campo pulsado para separar los cromosomas, y hasta causa fascinación cuando se descubre que las viejas especies que estuvieron agrupadas en un mismo género están emparentadas con otras de insospechado origen, y que los patrones morfológicos ya no son barreras seguras e infranqueables. Las especies se siguen comportando de acuerdo con la definición de Mayr, pero hay que cambiar los criterios, revisar los taxones y buscar nuevas metodologías para redefinir criterios con respecto a especies y subespecies en extinción que es necesario conservar para el bien de la humanidad. La misma evolución sitúa el listón de la taxonomía a un nivel alto para responder a los nuevos desafíos que suponen validar o rechazar las teorías y conceptos como la evolución horizontal que, hasta hace un tiempo, eran impensables. Hoy son temas de actualidad en los que trabajan biólogos que han descubierto que los plásmidos son capaces de transportar material genético de unas especies a otras cuando, hasta anteayer, se consideraban como barreras infranqueables.
De igual manera, se podría ejemplificar a través del interés actual por el estudio de la biodiversidad, enfocando su interés no solamente como un mejor conocimiento de todos los seres vivos del planeta, sino también como la posibilidad de poder conseguir beneficios de todo tipo con los seres vivos que se van descubriendo en países donde la investigación básica ha realizado pocos avances. Igualmente, la conservación de esta rica biodiversidad es una obligación ineludible de la raza humana, concepto que se enlaza directamente con el medio ambiente. Un medio ambiente sometido a agresiones constantes por la colonización de las poblaciones humanas, reducido en sus posibilidades de equilibrio, con tendencia a incrementar la degradación de los ecosistemas, efectos que contribuyen con cierta inmediatez a reducir los índices de biodiversidad. Estudiosos de los fenómenos de catástrofes dan cuenta de este tipo de ruptura de los equilibrios, ya sea por sobrecaptura de las especies (captura indiscriminada de ciertas especies de peces en el Pacífico sur) o, por el contrario, explosión de la natalidad de otras que dilapidan el recurso de sustento (sobrepoblación de elefantes en África).
Ha sido esta nueva faceta de la biología la que ha hecho que actualmente los países del continente iberoamericano constituyan una de las zonas geográficas más interesantes de estudio, dada la importante biodiversidad que poseen y la constante amenaza que se cierne sobre ellos (zonas de guerra, extrema pobreza, explotación irracional de los recursos, etc.). Tanto en la zona del istmo centroamericano como en el África meridional, están ya en peligro de extinción varias especies de animales y de plantas, amenazadas por la actividad antropomórfica. En este último caso, se ha planteado un contencioso por parte de algunos países que consideran como una agresión que países ricos hayan incrementado sus bancos de genes con material originario de su flora. Un articulista de Zimbabwe escribía en un periódico suramericano que «el germoplasma de medio millón de especies vegetales ha sido ‘saqueado’ por países del norte a naciones en desarrollo de África y América del Sur…» (Mutume, 1995), y agregaba: «Más de dos tercios de las especies vegetales del mundo son originarias de países en desarrollo, y el valor de los recursos genéticos de uso medicinal podría llegar a 47.000 millones de dólares para el año 2000». Estos países han perdido todo control sobre su utilización y las patentes, siendo más grave aún la negación al acceso a estos bancos de genes impuesto por las multinacionales. Plantas de uso agroindustrial que representan millones de dólares para la economía de los países en desarrollo, como el algodón y la soya, han sido manipuladas genéticamente en Estados Unidos y Europa, y posteriormente patentadas, lo que ha causado dificultades para su exportación al norte.
En Nicaragua, en ciertas zonas como las comunidades indígenas de Miskitos, Sumos, Ramas, etc., han convivido en una situación de equilibrio con su entorno natural en los últimos diez mil años, lo que les ha permitido obtener alimentación, medicinas, habitación y niveles básicos de calidad de vida haciendo uso de los recursos hídricos y de la capa vegetal. En otras zonas, el crecimiento de la población, que carece de los medios tecnológicos y del capital humano para la explotación racional de los recursos, crea un efecto negativo en el medio ambiente que rodea a estos asentamientos humanos. En tales casos se producen fenómenos de agresión a los recursos vegetales (selva tropical) para la obtención de suelo de cultivo y de combustible, lo que a su vez, por la labilidad de la estructura del suelo, produce su degradación, ya que son retirados de nutrientes de la capa orgánica. Algunos autores sostienen que la cubierta vegetal de las zonas tropicales se relaciona de una manera extremadamente débil con el suelo donde se implanta y que lo hace a través de fenómenos de simbiosis, como puede ser el de micorrizas. Éste consiste en una interacción positiva entre planta y hongo, en el que la planta alberga en sus tejidos al hongo y, por el contrario, sus raíces infectadas por el micelio (cuerpo) del hongo le permiten obtener nutrientes del suelo que de otra manera le sería imposible poder captar y aprovechar para su nutrición. De esta forma, las plantas alcanzan un mayor desarrollo, mejoran su resistencia a las plagas y elevan su rendimiento en calidad y cantidad de madera. Por el contrario, si se elimina la capa vegetal por tala indiscriminada, la alta pluviosidad de la zona arrastra el débil manto de materia vegetal y se pierde la capacidad de regeneración del suelo, dando paso a los primeros síntomas de erosión y haciendo imposible la restitucción de la capa vegetal de origen.
En una etapa más avanzada en la estructuración de un ecosistema, se puede producir una ruptura de los ciclos biogeoquímicos, apareciendo los primeros síntomas de las catástrofes biológicas. Como es bien sabido, los productores primarios, que en los ecosistemas terrestres son los árboles, albergan faunas de consumidores primarios que son la fauna herbívora y la frugívora, además de la microfauna del suelo que corresponde a insectos saprófagos. Todos ellos se ven amenazados de inmediato en cuanto el recurso de sostén que es el suelo comienza un ciclo de destrucción. Tanto unos como otros son, a su vez, eslabones anteriores que permiten la implantación de consumidores secundarios y terciarios. Al desaparecer los primeros, se producen migraciones y en los casos de dificultad de desplazamiento estas poblaciones se ven amenazadas de extinción. En resumen, en una agresión a un ecosistema hay un constante ataque a las especies y una constante amenaza de disminución de la biodiversidad.
De otro lado, está el factor que tiene que ver con la supervivencia de las poblaciones humanas. Las autoridades de estos países deben considerar si aplican normativas para evitar la agresión medioambiental o ponen a estas poblaciones en condiciones mínimas de supervivencia al no poder sembrar maíz y coger madera para construir viviendas y preparar alimentos. En tan lamentables condiciones que conforman la realidad de estas sociedades, el problema es la reducción notable de la biodiversidad: el dilema aparece sin solución en el horizonte próximo, por lo menos hasta la fecha. La única conclusión que podemos obtener es que biodiversidad y subdesarrollo son incompatibles. Parece que nos estamos aproximando a la hora en que las sociedades industrializadas van a tener que sopesar, entre sus políticas de cooperación, incluir líneas de acción para restablecer los equilibrios en las zonas deprimidas donde la destrucción de la biodiversidad ha pasado de ser una simple amenaza a constituirse en parte de una realidad. Como aporte positivo, la biología dispone de herramientas para inventariar y cooperar en la reparación de los ciclos dañados para restablecer el equilibrio entre las especies. Sin embargo, la evaluación del impacto ambiental, tanto desde el punto de vista de la actividad antropomórfica negativa como desde la implantación de industrias para impulsar el desarrollo, debe tener en cuenta el apoyo de las ciencias sociales. Sin contar con estos factores será imposible lograr que la sociedad en su conjunto se haga cargo de esta problemática (no hablamos sólo de zonas deprimidas).
En el entorno de los países desarrollados, estas sociedades, con más medios a su alcance, no han logrado garantizar un desarrollo sostenido en armonía con el medio ambiente. En cualquiera de los casos, se hace imprescindible desarrollar una conciencia social que sea capaz de involucrar a las poblaciones humanas en mantener los equilibrios con la naturaleza. Estos conceptos se recogen en determinadas sociedades como ecologismo. No obstante, creo pertinente señalar que la ecología es una ciencia cuantitativa que se preocupa del estudio del funcionamiento de los ecosistemas, y que lo que se echa en falta es la puesta en práctica de una política medioambiental que debe ser reflejo de una sociedad con las suficientes luces históricas como para comprender que las poblaciones humanas tienen una estricta dependencia de los sistemas donde están insertas, lo que hace que su deber sea tratar de mantener un equilibrio razonable con ellos dentro de sus posibilidades. El concepto general es introducir un manejo adecuado de los ecosistemas como recurso renovable para asegurar su permanencia. Esta conceptualización del medio ambiente como universo de procesos lábiles y limitados fue una cuestión que marcó la supervivencia de nuestros antepasados sin tener que recurrir a profundos análisis; lo esperable de las sociedades contemporáneas es que sepan rescatar dichos modos de hacer, de producir y de relacionarse con el medio ambiente, sin inducir procesos irreversibles de destrucción de los medios de subsistencia. En tal sentido, la biotecnología ambiental puede cumplir un papel relevante para detectar, prevenir y remediar la emisión de contaminantes, evitando la destrucción de los equilibrios en los países desarrollados y corrigiendo los errores cometidos por estos en los países terceros cuando asuman mayores niveles de desarrollo (FEB, 1994b).
La intromisión de la biología actual en la salud:
Los estudios del proyecto genoma humano (PGH), que en su inicio no fue más que la osadía de un grupo de científicos para introducir la curiosidad en los mecanismos básicos de regeneración de la propia especie, van echando luces poco a poco sobre errores genéticos y enfermedades que hace no más de diez años aparecían con una etiología indefinida. Los tres objetivos a cubrir por el PGH fueron: un mapa genético de las posiciones relativas de los genes, un mapa físico de las posiciones reales, y la determinación de la secuencia de las bases del ADN (FEB, 1995).
Todos los humanos somos portadores de un genoma muy parecido, pero las mutaciones de su propio ADN son las responsables de las diferencias. Si estas diferencias están localizadas en una parte importante del ADN, se puede producir una interrupción de la actividad biológica normal generando lo que conocemos como enfermedad genética, que corresponde a trastornos o deficiencias que son propios del individuo y que están determinados por la conformación de su ADN.
A partir de aquí se ha creado la terapia génica, que ha ido ganando cuerpo con la aplicación de las técnicas de transferencia génica. Las aplicaciones pueden dirigirse a campos como el tratamiento del cáncer y las enfermedades infecciosas (ej., en casos de tanta actualidad como el SIDA). Sin embargo, cuando se habla de este tema es necesario hacer referencia a dos formas de atacar el problema: una es la terapia somática, que se aplica mediante la transferencia de genes (uno o varios) a células corporales, y su efecto incide sólo sobre el paciente. La otra es la terapia genética germinal que se aplica a las células germinales del individuo, con lo que se podría variar la configuración genética de las células sexuales y transmitir dichos caracteres a las futuras generaciones. Esta segunda terapia tiene profundas implicaciones éticas y morales, estando prohibida actualmente en todos los países.
El factor de interdisciplinariedad en áreas muy definidas de la biología molecular, como es la transferencia génica, debe concentrar esfuerzos para resolver los problemas prácticos que crea el nuevo conocimiento, como son: el mejor percibimiento de los sistemas de trasplante de células implicadas en la reconstitución, el desarrollo y mejora de técnicas de transferencia de genes, las consecuencias de la introducción de células que producen proteínas que se comportan como extrañas, el mejor entendimiento de los factores que controlan la expresión de genes introducidos en células somáticas (Muñoz, 1992).
Los últimos avances en materia de trasplantes han comenzado a utilizar células de cordón umbilical que contienen aproximadamente unos 100 cc de sangre placentaria, con células precursoras del sistema sanguíneo capaces de crecer y con unas características que aumentan la compatibilidad con el receptor, disminuyendo el rechazo que se da con frecuencia en los trasplantes de médula ósea aplicados al tratamiento de linfomas, leucemias y algunos tipos de anemias (El País, 1996). En varios países se han puesto en marcha bancos privados en los que se almacenan todos los cordones umbilicales de los recién nacidos, con vistas a servir al niño donante, en primer lugar, y luego a otros usuarios.
Un reciente hallazgo, destacado por la prensa, hace referencia a las características del gen BRCA-2, responsable en un 10% de los cánceres de mama y de ovario, que actúa de forma silenciosa, es decir, pasa de una generación a otra sin manifestarse hasta que aparece la enfermedad; a estos genes inactivados por causas que se desconocen también se les ha llamado genes dormidos. Su detección, aislamiento y caracterización han contribuido a esclarecer su función como agentes etiológicos de este tipo de cáncer, ya que muchas mujeres pueden ser portadoras de este gen mutante pero no llegan a padecer la enfermedad. La detección por técnicas de biología molecular es una nueva vía para el tratamiento y prevención de esos tipos de cáncer (El País, 1996).
Esta verdadera estampida de los avances en biología molecular y en ingeniería genética está conduciendo a la idea de patentar series de genes humanos. Creemos que de forma paralela se deben introducir criterios que regulen y modulen el alcance de los mismos para que dicha biología y la que se haga a partir del año 2000 tengan abierta una puerta al futuro. En tal aspecto tiene especial influencia la actitud de las empresas, que se muestran renuentes a desarrollar aplicaciones diagnósticas y terapéuticas si sus cuantiosas inversiones no están protegidas mediante patentes. Este es un debate recién abierto por el que habrá que pronunciarse, teniendo en cuenta que se está manipulando la base que da consistencia a la existencia de la propia especie humana.

Los grandes biologos

Primero estan Aristoteles y Platon que hicieron sistemas de clasificación y aristoteles habló de una escala natural de lo mas simple a lo mas complejo. En la edad media no hay nada importante porque estaba la inquisición. Van Leehoweek que vio organismos pequeños por primera vez. Despues esta cesalpino que fue de los primeros que definió a la especie. buffon tambien definio a la especie y fue de los primeros que hablo de ancestrìa descendencia. despues linneo que clasifico a y describió mas de 7500 especies de plantas y cerca de 4500 de animales e creó el sistema de clasificación binominal. Lamarck porque su propuesta de transformismo no fue la decauda fue una de las bases de darwin.Charls lyell que propuso el transformismo en el que decia que los cambios de la tierra eran por procesos graduales. Cuvier que era catastrofista pero acepto la extinción de las especies Geofrroy saint-hilare que `propuso lo de los carcateres homologos. despues esta Darwin por la selección natural y el origen de las especies y realizó arboles evolutivos-hasta aqui todos ellos no eran biologos se les conocia como naturalistas-depues esta haeckel quien propuso la teoria de la recapitulación: la ontogenia rcapitula la filogenia. sigue mendel con las leyes de la herencia, . Huxley que fue neodarwinista. virchowff con los pustulados de la teoria celular junto con Schleiden y Shwan, watson y crick con el modelo de dna en doble cadena y mayr y simpson y compañia por la sintesis moderna de la teoria evolutiva.



miércoles, 26 de octubre de 2011

Historia de la Bilogia

La historia de biología
remonta el estudio de los seres vivos desde la Antigüedad hasta la época actual. Aunque el concepto de biología como ciencia en si misma nace en el siglo XIX, las ciencias biológicas surgieron de tradiciones médicas e historia natural que se remontan a el Āyurveda, la medicina en el Antiguo Egipto y los trabajos de Aristóteles y Galeno en el antiguo mundo grecorromano. Estos trabajos de la Antigüedad siguieron desarrollándose en la Edad Media por médicos y eruditos musulmanes como Avicena. Durante el Renacimiento europeo y a principios de la Edad Moderna el pensamiento biológico experimentó una revolución en Europa, con un renovado interés hacia el empirismo y por el descubrimiento de gran cantidad de nuevos organismos. Figuras prominentes de este movimiento fueron Vesalio y Harvey, que utilizaron la experimentación y la observación cuidadosa en la fisiología, y naturalistas como Linneo y Buffon que iniciaron la clasificación de la diversidad de la vida y el registro fósil, así como el desarrollo y el comportamiento de los organismos. La microscopía reveló el mundo, antes desconocido, de los microorganismos, sentando las bases de la teoría celular. La importancia creciente de la teología natural, en parte una respuesta al alza de la filosofía mecánica, y la pérdida de fuerza del argumento teleológico impulsó el crecimiento de la historia natural.

Calentamiento global

El calentamiento global es un término utilizado para referirse al fenómeno del aumento de la temperatura media global, de la atmósfera terrestre y de los océanos, que posiblemente alcanzó el nivel de calentamiento de la época medieval a mediados del siglo XX, para excederlo a partir de entonces.

El calentamiento global está asociado a un cambio climático que puede tener causa antropogénica o no. El principal efecto que causa el calentamiento global es el efecto invernadero, fenómeno que se refiere a la absorción por ciertos gases atmosféricos principalmente H2O, seguido por CO2 y O3 de parte de la energía que el suelo emite, como consecuencia de haber sido calentado por la radiación solar. El efecto invernadero natural que estabiliza el clima de la Tierra no es cuestión que se incluya en el debate sobre el calentamiento global. Sin este efecto invernadero natural las temperaturas caerían aproximadamente en unos 30 °C; con tal cambio, los océanos podrían congelarse y la vida, tal como la conocemos, sería imposible. Para que este efecto se produzca, son necesarios estos gases de efecto invernadero, pero en proporciones adecuadas. Lo que preocupa a los climatólogos es que una elevación de esa proporción producirá un aumento de la temperatura debido al calor atrapado en la baja atmósfera.